Respiratory mechanics and maximal expiratory flow in the anesthetized mouse.

نویسندگان

  • Y L Lai
  • H Chou
چکیده

Mice have been widely used in immunologic and other research to study the influence of different diseases on the lungs. However, the respiratory mechanical properties of the mouse are not clear. This study extended the methodology of measuring respiratory mechanics of anesthetized rats and guinea pigs and applied it to the mouse. First, we performed static pressure-volume and maximal expiratory flow-volume curves in 10 anesthetized paralyzed C57BL/6 mice. Second, in 10 mice, we measured dynamic respiratory compliance, forced expiratory volume in 0.1 s, and maximal expiratory flow before and after methacholine challenge. Averaged total lung capacity and functional residual capacity were 1.05 +/- 0.04 and 0.25 +/- 0.01 ml, respectively, in 20 mice weighing 22.2 +/- 0.4 g. The chest wall was very compliant. In terms of vital capacity (VC) per second, maximal expiratory flow values were 13.5, 8.0, and 2.8 VC/s at 75, 50, and 25% VC, respectively. Maximal flow-static pressure curves were relatively linear up to pressure equal to 9 cm H(2)O. In addition, methacholine challenge caused significant decreases in respiratory compliance, forced expiratory volume in 0.1 s, and maximal expiratory flow, indicating marked airway constriction. We conclude that respiratory mechanical parameters of mice (after normalization with body weight) are similar to those of guinea pigs and rats and that forced expiratory maneuver is a useful technique to detect airway constriction in this species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperoxia-induced changes in mouse lung mechanics: forced oscillations vs. barometric plethysmography.

Hyperoxia-induced lung damage was investigated via airway and respiratory tissue mechanics measurements with low-frequency forced oscillations (LFOT) and analysis of spontaneous breathing indexes by barometric whole body plethysmography (WBP). WBP was performed in the unrestrained awake mice kept in room air (n = 12) or in 100% oxygen for 24 (n = 9), 48 (n = 8), or 60 (n = 9) h, and the indexes...

متن کامل

Maximum static inspiratory and expiratory pressures with different lung volumes

BACKGROUND Maximum pressures developed by the respiratory muscles can indicate the health of the respiratory system, help to determine maximum respiratory flow rates, and contribute to respiratory power development. Past measurements of maximum pressures have been found to be inadequate for inclusion in some exercise models involving respiration. METHODS Maximum inspiratory and expiratory air...

متن کامل

Expiratory flow limitation.

The first major advance in understanding expiratory flow limitation of the lungs came with the description of isovolume pressure-flow curves. These curves documented the existence of a volume-dependent limit to maximal expiratory flow and led directly to the description of the maximal expiratory flow-volume (MEFV) curve. Definitive modeling of flow limitation awaited the description of a locali...

متن کامل

Respiratory Function in Healthy Taiwanese Infants: Tidal Breathing Analysis, Passive Mechanics, and Tidal Forced Expiration

BACKGROUND Although infant lung function (ILF) testing is widely practiced in developed Western countries it is not typically performed in Eastern countries, and lung measurements are scarce for Asian infants. Therefore, this study aimed to establish normal reference values for Taiwanese infants. MATERIALS AND METHODS Full-term infants without any chronic diseases and major anomalies were enr...

متن کامل

Analysis of the mechanisms of expiratory asynchrony in pressure support ventilation: a mathematical approach.

A mathematical model was developed to analyze the mechanisms of expiratory asynchrony during pressure support ventilation (PSV). Solving the model revealed several results. 1) Ratio of the flow at the end of patient neural inspiration to peak inspiratory flow (VTI/V(peak)) during PSV is determined by the ratio of time constant of the respiratory system (tau) to patient neural inspiratory time (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 88 3  شماره 

صفحات  -

تاریخ انتشار 2000